Geotechnical Data Report

S-13-243 (Buchanan Bridge Road) Emergency Bridge Replacement over Adams Creek Chesterfield County, South Carolina

February 7, 2019 SCDOT Project ID.: P038245 Terracon Project No. 7318P119E

Prepared for: South Carolina Department of Transportation Columbia, South Carolina

Prepared by:

Terracon Consultants, Inc. Columbia, South Carolina

February 7, 2019

South Carolina Department of Transportation 955 Park Street, Room 421 Columbia, South Carolina 29201

- Attn: Mr. Trapp Harris, P.E. Geotechnical Design Engineer – Design-Build Section
- Re: Geotechnical Data Report S-13-243 (Buchanan Bridge Road) Emergency RBO Adams Creek Chesterfield County, South Carolina SCDOT Project ID.: P038245 Terracon Project Number: 7318P119E

Dear Mr. Harris:

Terracon Consultants Inc. (Terracon) has completed the geotechnical exploration and testing services for the above referenced project. These services were conducted in general accordance with the SCDOT Request for Subsurface Exploration and Laboratory Testing (SCDOT Project ID: P038245, authorized on November 5, 2018). This geotechnical data report presents the findings of the subsurface exploration and laboratory testing along with an overview of testing activities.

1.0 INTRODUCTION

The South Carolina Department of Transportation (SCDOT) has contracted Terracon to perform subsurface exploration and laboratory testing for the replacement of the S-13-243 (Buchanan Bridge Road) bridge over Adams Creek in Chesterfield County, SC. The purpose of this work is to develop information relative to subsurface soil and groundwater conditions at the bridge location. No geotechnical recommendations are associated with the requested scope of study.

The following sections of this report contain a summary of the activities for our field exploration and laboratory testing. The logs of the borings, the Site Location Map and the Exploration Plan are included in Appendix A. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included in Appendix B. Descriptions of the field exploration and laboratory testing are included in their respective appendices.

Terracon Consultants, Inc. 521 Clemson Road Columbia, South Carolina 29229 P [803] 741 9000 F [803] 741 9900 terracon.com S-13-243 (Buchanan Bridge Road) RBO Adams Creek
Chesterfield County, SC February 7, 2019 Terracon Project No. 7318P119E/Project ID.: P038245

2.0 PROJECT DESCRIPTION

The project site is located at the bridge crossing of S-13-243 (Buchanan Bridge Road) and Adams Creek in Chesterfield County, South Carolina. It is our understanding that the project will include the replacement of the previously damaged bridge with a new structure on the existing or similar horizontal alignment. The original structure appears to be a double arch culvert. The foundation system is not obvious from the field observation.

3.0 GEOTECHNICAL TESTING

The geotechnical exploration for this project was performed between December 13 and 18, 2018. The results of our field work and our associated laboratory testing is attached in Appendixes A and B of this report.

3.1 Field Exploration

Our field exploration at the site consisted of the following:

• Two (2) Standard Penetration Test (SPT) Borings (B-1 and B-2)

The tests were performed at the approximate locations provided by the SCDOT. A description of our testing methods and graphical logs outlining the soil conditions at each test location are presented in Appendix A. Test locations were established in the field by Terracon and surveyed by Construction Support Services, LLC, after completion. Photographs of the drill rig set up at each boring location are provided in Appendix A.

3.2 Laboratory Testing

The following laboratory tests were performed on the soil samples collected at the site.

- Nine (9) Natural Moisture Content Tests
- Eight (8) No. 200 Wash Tests
- Five (5) Atterberg Limits Tests
- Three (3) Unconfined Compressive Strength of Rock Tests

The general scope of the laboratory testing frequency was determined by the SCDOT. The laboratory procedures and results of the laboratory tests are presented in Appendix B.

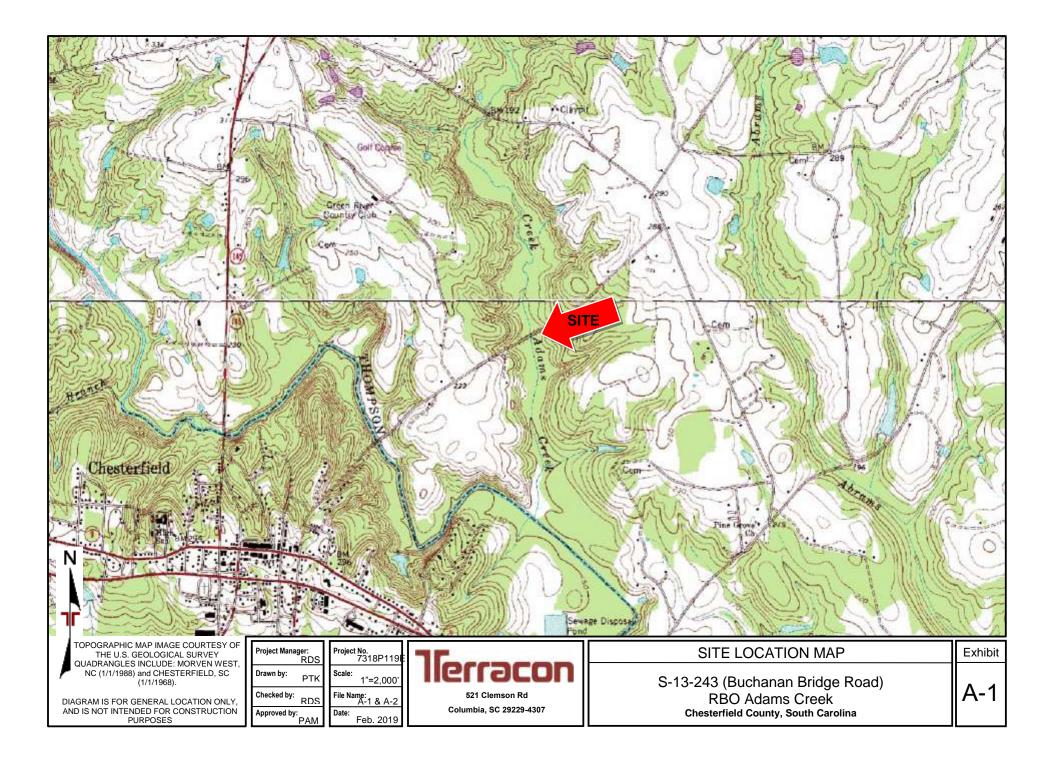
Geotechnical Data Report

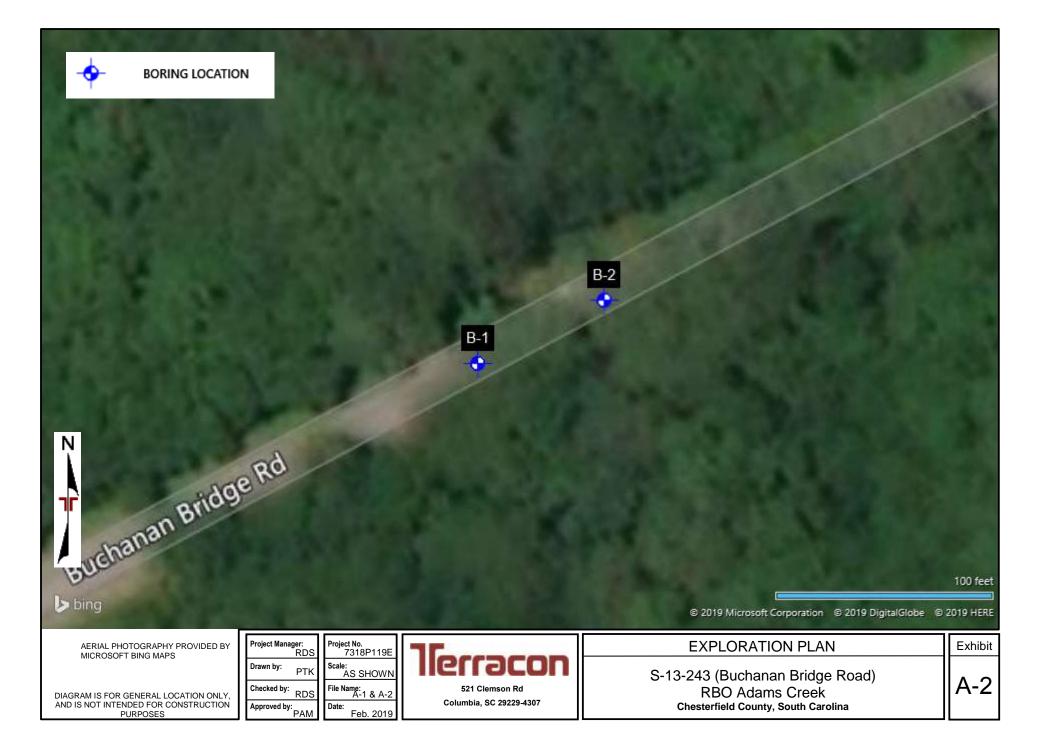
S-13-243 (Buchanan Bridge Road) RBO Adams Creek
Chesterfield County, SC February 7, 2019
Terracon Project No. 7318P119E/Project ID.: P038245

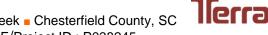
4.0 CLOSURE

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.


Ryan D. Starcher, E.I.T. Senior Staff Engineer Phillip A. Morrison, P.E. Geotechnical Department Manager SC Registration No. 17275


Attachments:


Appendix A Appendix B Appendix C

APPENDIX A FIELD EXPLORATION

Exhibit A-1 – Site Location Map Exhibit A-2 – Exploration Plan Exhibit A-3 – Summary of Field Data Exhibit A-4 – Field Exploration Description Exhibit A-5 – Soil Description Terms Exhibit A-6 – Rock Description Terms Exhibit A-7 – Soil Rock Symbol Log Exhibit A-8 – Boring Logs Exhibit A-9 – Rock Photographic Log Exhibit A-10 – Drill Rig Photograph Log

S-13-243 (Buchanan Bridge Road) RBO Adams Creek
Chesterfield County, SC February 7, 2019
Terracon Project No. 7318P119E/Project ID.: P038245

Summary of Field Data

Test No.	Ground Elevation (ft)	Test Depth (ft.)	Northing	Easting	Latitude	Longitude
B-1	165.08	43.1	1061788.064	2280203.951	N34.748070	W80.067243
B-2	165.18	42.4	1061817.735	2280262.193	N34.748151	W80.067048

Geotechnical Data Report

S-13-243 (Buchanan Bridge Road) RBO Adams Creek
Chesterfield County, SC February 7, 2019
Terracon Project No. 7318P119E/Project ID.: P038245

. Terracon

FIELD EXPLORATION DESCRIPTION

Overview

The general testing locations were provided by the SCDOT and located in the field by Terracon by taking measurements from existing structures. The borings were surveyed by Construction Support Services, LLC after testing and drilling was complete. The locations are shown on the appended Exploration Plan.

A field log of each test location was prepared by our field engineer. The final boring logs included with this report represent the engineer's description of the encountered conditions modified as necessary based on laboratory test results of the individual samples.

Soil Test Borings (STB)

All boring and sampling operations were conducted in general accordance with the following procedures:

- SCDOT Geotechnical Design Manual 2010
- ASTM D5783, "Standard Guide for Use of Direct Rotary Drilling with Water-Based Drilling Fluid for Geo-environmental Exploration"
- ASTM D1586 "Test Method for Penetration Test and Split-Barrel Sampling of Soils"
- ASTM D4220 "Standard Practices for Preserving and Transporting Soil"

Each boring was advanced using rotary wash drilling techniques to the planned termination depths. The sampling program is summarized in the following table:

Test ID	Total Depth	Interval of Continuous Sampling
B-1	100 feet or refusal and 20 feet of coring	0 to 10 feet
B-2	100 feet or refusal and 20 feet of coring	0 to 10 feet

Soil samples were obtained with a standard 1.4-inch I.D., 2-inch O.D., split-barrel sampler, also known as a standard split-spoon. The sampler is advanced into the soil a total of 18 to 24 inches by striking the drill rod using a 140-pound automatic hammer falling 30 inches. The number of blows required to advance the sampler for each of three to four, 6-inch increments is recorded. The sum of the number of blows for the second and third increments is called the "Standard Penetration Value", or N-value (N_{meas}, blows per foot). The N-value, when properly evaluated, is an index to the soil strength.

The borings were advanced to refusal of the drilling equipment and continued below this depth using diamond bit rock coring techniques. NQ2 sized cores were recovered from the borehole. The rock recovery ratios (REC, percentage of the total core run), Rock Quality Designation (RQD, percentage of the total core run of pieces greater than 4 inches) were recorded along with a

Geotechnical Data Report

S-13-243 (Buchanan Bridge Road) RBO Adams Creek
Chesterfield County, SC February 7, 2019
Terracon Project No. 7318P119E/Project ID.: P038245

description of the rock. An explanation of the rock descriptions shown on the logs is provided in Exhibit 6. Photos of the recovered rock core specimens are provided on Exhibit A-9 of the Appendix.

Soil Classification provides a general guide to the engineering properties of various soil types and enables the engineer to apply his experience to current situations. In our exploration, samples obtained during drilling operations are examined and visually classified by a geotechnical engineer using the procedures outlined in ASTM D2487 - Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System). Laboratory testing was also performed on select split-spoon samples to evaluate index properties for further classification. The soils are described according to color, texture, and relative density or consistency (based on standard penetration resistance). The designations shown on the logs are described on Exhibit A-5.

Consistent with SCDOT GDM, the borings were drilled using mud rotary drilling techniques. As the drilling method introduces water into the borehole, time-of-drilling water levels could not be recorded. As noted on the boring log, the water levels of the borings were recorded 1 day after the start of drilling activities. These water levels are indicated on the boring logs. At the conclusion of the work, the boreholes were backfilled with sand and the borings were capped with cold-patch asphalt.

SOIL DESCRIPTION TERMS

Relative Density/Consistency Terms Relative Density¹

Consistency²

Descriptive Term	Relative Density	SPT Blow Count	Descriptive Term	Unconfined Compression Strength (q _u) (tsf)	SPT Blow Count
Very Loose	0 to 15%	4 and less	Very Soft	0.25 and less	2 and less
Loose	16 to 35%	5 to 10	Soft	0.26 to 0.50	3 to 4
Medium Dense	36 to 65%	11 to 30	Firm	0.51 to 1.00	5 to 8
Dense	66 to 85%	31 to 50	Stiff	1.01 to 2.00	9 to 15
Very Dense	86 to 100%	51 and more	Very Stiff	2.01 to 4.00	16 to 30
-			Hard	4.01 and more	31 and more

Moisture Condition

Descriptive Term	<u>Criteria</u>
Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually in coarse-grained soils below the water table

Color

Describe the sample color while sample is still moist.

Angularity¹

Descriptive Term	Criteria
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces.
Subangular	Particles are similar to angular description but have rounded edges.
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges.
Rounded	Particles have smoothly curved sides and no edges.

HCI Reaction³

Descriptive Term	<u>Criteria</u>
None Reactive	No visible reaction
Weakly Reactive	Some reaction, with bubbles forming slowly
Strongly Reactive	Violent reaction, with bubbles forming immediately
g.y.	······································

Cementation³

Descriptive Term	<u>Criteria</u>
Weakly Cemented	Crumbles or breaks with handling or little finger pressure
Moderately Cemented	Crumbles or breaks with considerable finger pressure
Strongly Cemented	Will not crumble or break with finger pressure

Particle-Size Range¹

Gravel	Diameter, mm	Sieve Size	Sand	Diameter, mm	Sieve Size
Fine	4.76 to 19.1	#4 to ¾ inch	Fine	0.074 to 0.42	#200 to #40
Coarse	19.1 to 76.2	3/4 inch to 3 inch	Medium	0.42 to 2.00	#40 to #10
			Coarse	4.00 to 4.76	#10 to #4

Primary Soil Type^{1, 2}

The primary soil type will be shown in all capital letters.

USCS Soil Designation

Indicate USCS soil designation as defined in ASTM D-2487 and D-2488

AASHTO Soil Designation

Indicate AASHTO soil designation as defined in AASHTO M-145 and ASTM D-3282

¹ Applies to coarse-grained soils (major portion retained on No. 200 sieve)

² Applies to fine-grained soils (major portion passing No. 200 sieve)

³Use as required

DESCRIPTION OF ROCK PROPERTIES

WEATHERING	
Fresh	Rock fresh, crystals bright, few joints may show slight staining. Rock rings under hammer if crystalline.
Very slight	Rock generally fresh, joints stained, some joints may show thin clay coatings, crystals in broken face show bright. Rock rings under hammer if crystalline.
Slight	Rock generally fresh, joints stained, and discoloration extends into rock up to 1 in. Joints may contain clay. In granitoid rocks some occasional feldspar crystals are dull and discolored. Crystalline rocks ring under hammer.
Moderate	Significant portions of rock show discoloration and weathering effects. In granitoid rocks, most feldspars are dull and discolored; some show clayey. Rock has dull sound under hammer and shows significant loss of strength as compared with fresh rock.
Moderately severe	All rock except quartz discolored or stained. In granitoid rocks, all feldspars dull and discolored and majority show kaolinization. Rock shows severe loss of strength and can be excavated with geologist's pick.
Severe	All rock except quartz discolored or stained. Rock "fabric" clear and evident, but reduced in strength to strong soil. In granitoid rocks, all feldspars kaolinized to some extent. Some fragments of strong rock usually left.
Very severe	All rock except quartz discolored or stained. Rock "fabric" discernible, but mass effectively reduced to "soil" with only fragments of strong rock remaining.
Complete	Rock reduced to "soil". Rock "fabric" not discernible or discernible only in small, scattered locations. Quartz may be present as dikes or stringers.

HARDNESS (for engineering description of rock – not to be confused with Moh's scale for minerals)

Very hard	Cannot be scratched with knife or sharp pick. Breaking of hand specimens requires several hard blows of geologist's pick.
Hard	Can be scratched with knife or pick only with difficulty. Hard blow of hammer required to detach hand specimen.
Moderately hard	Can be scratched with knife or pick. Gouges or grooves to ¼ in. deep can be excavated by hard blow of point of a geologist's pick. Hand specimens can be detached by moderate blow.
Medium	Can be grooved or gouged 1/16 in. deep by firm pressure on knife or pick point. Can be excavated in small chips to pieces about 1-in. maximum size by hard blows of the point of a geologist's pick.
Soft	Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure.
Very soft	Can be carved with knife. Can be excavated readily with point of pick. Pieces 1-in. or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail.

Joint, Bedding, and Foliation Spacing in Rock ^a					
Spacing Joints Bedding/Foliation					
Very close	Very thin				
Close	Thin				
Moderately close	Medium				
Wide	Thick				
Very wide	Very thick				
	Joints Very close Close Moderately close Wide				

a. Spacing refers to the distance normal to the planes, of the described feature, which are parallel to each other or nearly so.

Rock Quality Designator (RQD) a		Joint Openness Descriptors		
RQD, as a percentage Diagnostic description		Openness	Descriptor	
Exceeding 90	Excellent	No Visible Separation	Tight	
90 – 75	Good	Less than 1/32 in.	Slightly Open	
75 – 50	Fair	1/32 to 1/8 in.	Moderately Open	
50 – 25	Poor	1/8 to 3/8 in.	Open	
Less than 25	Very poor	3/8 in. to 0.1 ft.	Moderately Wide	
a. RQD (given as a percentage) = length of core in pieces		Greater than 0.1 ft.	Wide	

RQD (given as a percentage) length of core in pieces

4 in. and longer/length of run.

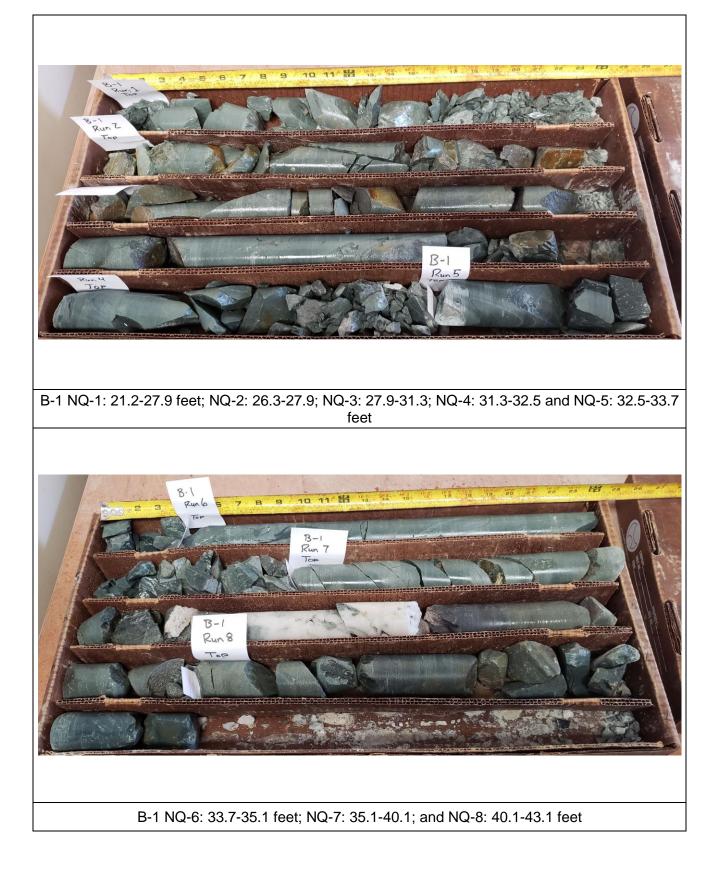
References: American Society of Civil Engineers. Manuals and Reports on Engineering Practice - No. 56. Subsurface Investigation for Design and Construction of Foundations of Buildings. New York: American Society of Civil Engineers, 1976. U.S. Department of the Interior, Bureau of Reclamation, Engineering Geology Field Manual.

COAL CONCRETE CORAL FILL CONCRETE CONCRETE CONCRETE CORAL FILL CONCRETE CONCRETE CORAL FILL CONCRETE CONCRETE CONCRETE CORAL FILL CONCRETE CONCRETE CONCRETE CORAL FILL CONCRETE CONCRETE CONC	
GW-CM GWS LIMESTONE MH	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Image: PT standstone Sta	LTSTORE SM SP SPG SP-SC SP-SM SW SWG X
$\begin{array}{c} \text{SW-SC} \\ \text{SW-SM} \\ \text{TILL} \\ \text{TOPSOIL} \\ \text{TV} \\ \text{V} $	Abbreviations N.E. = Not Encountered N.M. = Not Measured
Project Manager: Project No. PAM 7318P119E Drawn by: KJZ Checked by: Soil – Rock – Log Soil – Rock – Log Date: February 7, 2019 PH. (803) 741-9000	SOIL / ROCK / LOG SYMBOL LEGEND

Project	ID: P	038245								Co	ounty	/:	Cr	este	erfiel	d		В	oring	I No	.: B	-1		
Site Des			S-13-2	43 (Buch	anan	Bridae	e Ro	oad) F							•	I			oute			243	
Eng./Ge				- (ocation						Offse					Α	lignr		_	Mai		
-	165.1		Latitude	e:		34.74		_	ongit	tude:				243		Date	Star						2018	
Total De		43.11			Depth		21.2			ore De			-	.9 ft		Date				:	-		2018	
Bore Ho				3			ler Co						1	qui		Y	(N		1		Used		Y	(N)
Drill Ma	chine:	CME	-55/30	0 0	Drill N	Ietho	d: R	W			Har	nme	r Ty	pe:	Aut	omat	ic		Ener	rgy F	Ratic): 9	3.2%	6
Core Siz	ze:	NQ2		C	Driller	:	AM				Gro	und	wat	er:	TO	B	N/A			24	HR	1	0.6 f	ť
																	1							
																			• 5	SPTN	N VAL	UE		
Elevation (ft)	0.0 Depth 0. (ft)		ATERIA Roadwa		DESC	RIPT	ION		Graphic Log	Sample Depth	(II) Sample	No./Type	1st 6"	2nd 6" 3rd 6"	4th 6"	N Value	0 1		PL ★ ▲ FIN 0 30	IES C			LL × (%)) <u>80</u>	90
	0.3	ASPHAL	LT (3 incl	hes)						0.3	3								:	÷	:			
_	2.0	non-read Clayey S	dense, v ctive, wea SAND (S - NMC=1	akly C) (/	cemer A-2-6)	nted, fi 5YR 5	ne,	ar,		2.0)			12 7		19		a			•		• • • • • • • • • • • • •	
-	-	angular,	dense to non-read	ctive	, weak	kly cen	nented,			4.0		5-2	6	6 7	7 5	13		•			•		•	
160.1-	6.0		y SAND - NMC=1 PI=NP	• •	<i>,</i> ,	, ,				6.0		5-3	3	2 5	56	7 2	* •							
-	8.0	Sandy L	oist, reddi .ean CLA - NMC=1	Y (C						8.0	- 5	5-4	2	2 2	2 2	4	•	0			• • • • • • • •		* * * * * * *	
- - 155.1-	-	CLAY (C	oist, gray, CL) (A-4(- NMC=2 PI=10	3)) 7	.5YR \$	5/1	-	an				S-5	2	2 2	2 1	4	•	×	\sim					
-	<u>-</u> -	Ľ									-										• • • • • • • • • • • • • • • • • • •		•	-
-	14.0									13.5	5										•			
150.1-	-	subangu	dense, r Jar, non- ed, Claye 10Y 5/1	reac	tive, w	veakly	-				S	S-6 V	VOH	52	2	27		×	>• •		-			
-	17.0	PL=16, I									_								•		•		•	
-	-	subangu	nse, mois ular, non- ed, Claye 10Y 5/1	reac	tive, w	veakly				18.5	_	6-7	2850	0/3"		50/3"					- - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	>>
145.1-	- 21.2-									21.1			0/4			50/1"					•			
-		AND BE	AL AT 21 GIN COI ENTARY	RINC	G					21.2		3-8-5	₩ <u>₩</u>			- 190/1 "			•		•		• • • • •	
-	-	greenish to mediu VC to C,	i gray, la um rock, , Slk & S : %Rec=4	mina B, N (GL	ted, fi to VN EY1 /	ne, fre I, No, I 5G 4/1	sh, wea No, PI & I)	lr,				Q-1					RE	C=4	0%, F	RQD=	=0%			-
		<u> </u>	,	,	,	÷ /0, (20, 20,			I GENI						<u> </u>	. :	. :		Con	tinu		i lext l	Parr
		ed Sample	SAMPLE	N(Cl	Q - Ro U - Cu	ttings	e, 1-7/8" us Tube	1		HS CF	D SA - H FA - (C - [Contii	านอน	s Flig	ıger	RILLIN	I	RW		tary \	Nash			ayt

SC_DOT 7318P119E \$-13-243 SCDOT.GPJ SCDOT DATA TEMPLATE_01_30_2015.GDT 2/7/19

Project	ID: P	038245					Co	ounty:	Chest	erfiel	d	B	oring No	.: B-1		
Site Des			S-13-243	(Buchana	an Bridge R	load) I			Creek				Route		3-243	
Eng./Ge	eo.: R	DS		Boring	Location:				Offset:			A	Nignmen	t: M	ain	
Elev.:	165.1	ft L	atitude:	34.	74807	Longi	tude:	-80	0.067243	3	Date \$	Starte	d:	12/17	7/2018	
Total D	epth:	43.1 f	t Soil	Depth:	21.2 ft	Co	ore De	epth:	21.9 ft	:	Date	Comp	leted:	12/18	3/2018	
Bore Ho	ole Dia	meter (in			npler Confi	gurati	on	Line	er Requi	red:	Y	N	Liner			N
Drill Ma			-55/300						er Type:				Energy I		93.2%)
Core Si	ze:	NQ2		Driller:	AM			Ground	dwater:	TO	3 1	N/A	24	HR	10.6 f	1
Elevation (ft)	Depth (ft)		ATERIAL	DESCRIF	PTION	Graphic Log	Sample Depth	(II) Sample No./Type	1st 6" 2nd 6"	3rd 6" 4th 6"	N Value	0 10 2	● SPT I PL ★ FINES (20 30 40		⊔L —× ₩ (%)	90
-	-	5 min/ft @NQ-3:		%, RQD=36	2%, GSI=25, %, GSI=30, si		26.3 27.9	- NQ-2				REC=	100%, RQE	0=22%		-
135.1 - -	-	@NQ-4: 13 min/ft		%, RQD=2	0%, GSI=25,		31.3	_ NQ-4					83%, RQD= 100%, RQE			
-	_		%Rec=100	%, RQD=2	8%, GSI=25,		32.5	NQ-5				REC=	100%, RQE	0=28%		
_	_	@NQ-6: RMR=39	%Rec=100 , 10 min/ft,	%, RQD=5 q _u =3090 ps	4%, GSI=35, si		33.7	_ NQ-6				REC=	100%, RQE)=54%		
130.1- - - - 125.1-	35.1 - - - -	greenish to strong & Ir, C & @NQ-7: RMR=44	rock, B, N VC, Slk (G %Rec=100 , 4 min/ft, q	ated, fine, to VN, Pa a LEY1 / 5G %, RQD=2 _u =8180 psi	fresh, weak & Sr, Qz, Pl 4/1) 6%, GSI=35,		35.1	- NQ-7				REC=	100%, RQI)=26%		
-	- 43.1	@NQ-8: 7 min/ft	%Rec=92%	%, RQD=23	%, GSI=35,			_ NQ-8				REC=	96%, RQD=	=23%		-
- 120.1 - - - -	- - - - - -	CORING	TERMINA	TED AT 43	.1 FEET			-								
<u> </u>						LF	GENI	D	1		1			•	•	
	Split Spo Jndisturt Rock Coi	on bed Sample	e C	TYPE IQ - Rock C CU - Cutting CT - Contini	IS		HS CF	SA - Hollo FA - Cont	ow Stem A inuous Flig ng Casing	uger			HOD / - Rotary ' - Rock C			


SC_DOT 7318P119E S-13-243 SCDOT.GPJ SCDOT DATA TEMPLATE_01_30_2015.GDT 2/7/19

Project Site Des	scriptio	on:		3-243	B (Buc	hanar	n Bridge	Road)		unty: Adams		hes ek		-				No.: oute:	-	3-243	\$
Eng./Ge	:: R	DS			Bo	ring L	ocation:				Offs	set:				Ali	gnm	nent:	N	lain	
Elev.:	165.2	ft	Latit	ude:		34.74	48151	Longi	tude:	-80	0.06	704	8	Date	e Stai	ted:			12/1	3/2018	3
otal De	epth:	42.	4 ft	Soi	I Dept	:h:	22 ft	C	ore De	pth:	2	0.4 1	ft	Date	e Cor	nplet	ted:		12/1	4/2018	3
Bore Ho	ole Dia	meter	(in):	3		Sam	pler Con	figurati	on	Lin	er R	Requ	ired	i: ``	Y (1	J)	Lir	ner U	sed:	Y	(
Drill Ma	chine:	C	NE-55/	300	Drill	Metho	d: RV	V		Hamm	er T	Vpe	: Aı	utoma	atic	E	ner	qy Ra	atio:	93.29	%
Core Siz	ze:	NQ2			Drille	er:	AM			Groun			_	ЭΒ	N/A			24H		10.2	
	1																				
																	• s	PT N '	VALU	Е●	
Elevation (ft)	0.0 Depth (ft)		MATE		DES	CRIP	ΓΙΟΝ	Graphic Log	Sample Depth (#)	Sample No./Type	1st 6"	2nd 6"	3rd 6"	tin 6" N Value						LL ———————————————————————————————————	
	0.2		IALT (2		s)			[7:17]	0.2	-	È					<u>0 20</u>		+0 5	<u> </u>	10 00	
-	-	Mediu	ım dens ar, non-	e, moi reactiv	ist, red /e, wea	akly ce	mented,			- SS-1	12	13	5	6 18		•					
	2.0	2.5YF		-			SC) (A-2-6)		2.0	- SS-2	4	1	4	4 8							
-	4.0	Loose	e, moist	light r	red, an	gular,	fino to		4.0		- T	т					•				
160.2-	_	mediu 6/6		/ey SA	ŃD (S	C) (A-6	6) 2.5YR			- SS-3	3	3	3	2 6							
_	6.0	@SS- PL=22	-2 - NM 2, PI=13	C=20, 3	%#200)=43.2	, LL=35,		6.0	- SS-4	1	2	4	5 6							
-	8.0_	non-re	e, moist eactive, ım, Clay	weakl	y ceme	ented,	fine to 2-6) 2.5YR		8.0						-				•		
- 155.2-	-	@SS-	-3 - NM				bangular,			- SS-5	4	7	2	2 9							
-	- 12.0_	non-re mediu 2.5YF	eactive, ım, Silty R 5/4	weakl , Clay	y ceme ey SAN	ented, ND (SN	fine to /I-SC) (A-4			_									•		
-	-	PL=1	6, PI=7				, LL=23,		13.5								•				
-	-	SILŤ	(ML) (A	-4) 10 `	YR 6/6		reactive,			SS-6	10	15	25	40				•			
150.2-		non-re	e, wet, l eactive, 0 (SW)	weakl	y ceme	ented,	gular, medium,			-											
	17.0							•••••									:				
-	-	non-re	dense, g eactive, 0 (SC) (weakl	y ceme	ented,	Clayey		18.5										•		
- 145.2-	-									SS-7	22	50/3"		50/	3"						
-	-									_											
-	22.0		ISAL A ⁻ BEGIN			SET C/	ASING		21.9 22.0		\$0/0	<u></u>		50/) "						
-	-	SEDII gray, MW te	MENTA laminat o N, No	RY SII ed, fine	LTSTO e, fresł	ı, weal	reenish k rock, B, 5 (GLEY15	,		- - NQ-1					RE	C=77	%, R	QD=1	7%		
		<u>5G /</u>	1)						I GENE	 ר						:	:	Conti	nuer	Next	P
	plit Spo						re, 1-7/8"	LL	HS	SA - Holle A - Con			Auge			RW ·	OD - Rot	ary W	ash	INCAL	<u>, c</u>

Site De: Eng./Ge	-		1		-		n Bridg .ocatio	_	/			Offset:			Alignm		13-243 ⁄lain
-	165.2		Latit	ude:	1201		48151		ongit	ude:		.067048	Dat	e Start	-		3/2018
Fotal D	epth:	42.4			Dept	:h:	221			re De	oth:	20.4 ft	Dat	e Com	pleted:	12/1	4/2018
Bore Ho	ole Dia	meter	(in):	3		Sam	pler C	onfig	guratio	n	Line	r Require	ed:	Y (N)	Lin	er Used:	: Y (1
Drill Ma	chine:	CM	1E-55/	300	Drill	Metho	od:	RW		1	lamme	er Type:	Autom	atic	Energ	y Ratio:	93.2%
Core Si	ze:	NQ2			Drille	er:	AM			(Ground	water:	тов	N/A		24HR	10.2 ft
															• SP	PT N VALU	IE ●
Elevation (ft)	Depth (ft)	ſ	MATE	RIAL	DES	CRIP	TION		Graphic Log	Sample Depth (ft)	Sample No./Type	1st 6" 2nd 6" 3rd 6"	4th 6" N Value	0 10		MC S CONTE 40 50 60	LL —X NT (%) 70 80 9
		@NQ- 6 min/1		ec=77%	6, RQI	D=17%	6, GSI=	20,							· · ·		
-	26.3	SEDIN			TSTO		reenish			26.3				_			
-	-	gray, la N to V	aminate	ed, fine Sd, Pl	e, fresh	ı, weal	k rock, , Slk &	В,		-	NQ-2			REC	=37%, RC	QD=0%	
_	28.6	@NQ- min/ft	2: %Re	ec=37%	%, RQ[D=0%,	GSI=2	5, 9		28.6							
135.2-	- 31.3	gray, la to VN,	aminate	ed, fine o, PI &	e, fresh	ı, weal	reenish k rock, Slk & S	B, N		- 31.3 ⁻	NQ-3			REC	=25%; R G	⊋ D= 27%	
-	-	9 min/	ft				6, GSI=			-	NQ-4			REC	=55%, RC	QD=0%	
- 130.2-	34.2-	gray, la ∖to VN, (GLEY	aminate Su, Sc ′15 / 50	ed, fine I, PI & G _/1)	e, fresh St, C &	n, weal & VC, S	reenish k rock, I Slk & S	B, N		34.2-	NQ-5				=42%, R0	00=0%	
_	36.3	min/ft					GSI=2			36.3					-τ <u></u> 2 /0, rtd		
_	38.6	gray, la N, No, (GLEY	aminate No, Pl ′15 / 50	ed, fine & Ir, C G_/1)	e, fresh 2 & VC	n, weal , Slk 8		В,		- - 38.6	NQ-6			REC	=25%, RC	QD=0%	
- 125.2-	-	10 mir	n/ft				GSI=2			- 40.3 ⁻	NQ-7			REC	=25%, RC	QD=0%	
_	_	gray, la	aminate o, Cl, P	ed, fine	e, fresh	ı, weal	reenish k rock, (GLEY1	В,		40.5	NQ-8			REC	=26%, RC	QD=0%	
_	42.4	min/ft			·		GSI=2			-							
_ 120.2 <i>-</i>	-	gray, la VN to (GLEY	aminate N, No, ′15 / 50	ed, fine No, Pl G _/1)	e, fresh & Ir, C	n, weal & VC	reenish k rock, s, Slk &	B, S		-							
-	_	12 mir	n/ft				GSI=2			-							
_	_	10 mir	ı/ft				GSI=2			-							
_	-	CORIN	NG TEF	≺MINA	IED A	42.4	I FEET			_							
										GEND			I		. :	. : :	. í
SS - S	Split Spo		SAM	IPLER	TYPE	ock Co							DRILI	ING ME	THOD		

Geotechnical Data Report S-17-243 (Buchanan Bridge Loop) RBO Adams Creek Chesterfield County, SC Terracon Project No. 7318P119E/Project ID.: P038245

Geotechnical Data Report S-17-243 (Buchanan Bridge Loop) RBO Adams Creek Chesterfield County, SC Terracon Project No. 7318P119E/Project ID.: P038245

B-2 NQ-1: 22.0-26.3 feet; NQ-2: 26.3-28.6 feet; NQ-3: 28.6-31.3 and NQ-4: 31.3-34.2 feet

B-2 NQ-5: 34.2-36.3 feet, NQ-6: 36.3-38.6 feet; NQ-7: 38.6-40.3 feet, and NQ-8: 40.3-42.4 feet

S-13-243 (Buchanan Bridge Road) RBO Adams Creek
Chesterfield County, SC February 7, 2019
Terracon Project No. 7318P119E/Project ID.: P038245

Drill rig on B-1

Drill rig on B-2

APPENDIX B LABORATORY TESTING

Exhibit B-1 – Laboratory Testing Description Exhibit B-2 – Summary of Laboratory Data Laboratory Data Sheets

Geotechnical Data Report

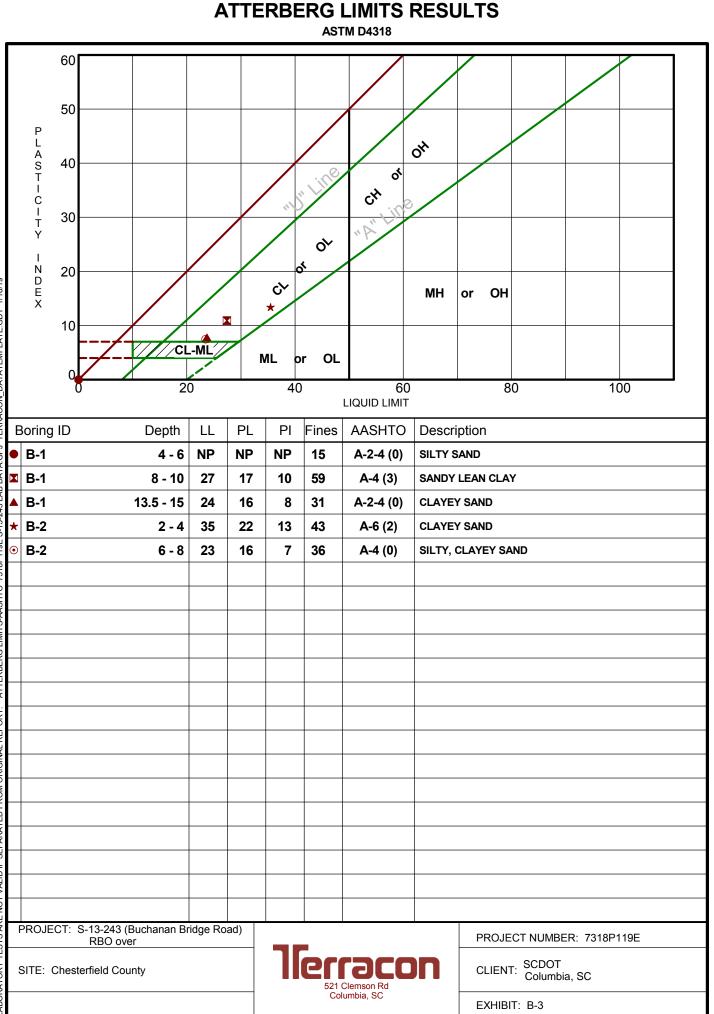
S-13-243 (Buchanan Bridge Road) RBO Adams Creek
Chesterfield County, SC February 7, 2019
Terracon Project No. 7318P119E/Project ID.: P038245

LABORATORY TESTING DESCRIPTION

The samples collected during the field exploration were taken to our laboratory for additional testing. The laboratory testing program was developed by the SCDOT. Using the provided testing program, the laboratory tests were conducted on selected soil samples from the borings. The test results are presented in this appendix.

The laboratory test results were used to confirm the soil descriptions presented on the boring logs in Appendix A. Laboratory tests were performed in general accordance with the applicable ASTM, AASHTO, SCDOT or other accepted standards.

Selected soil samples obtained from the site were tested for the following engineering properties:

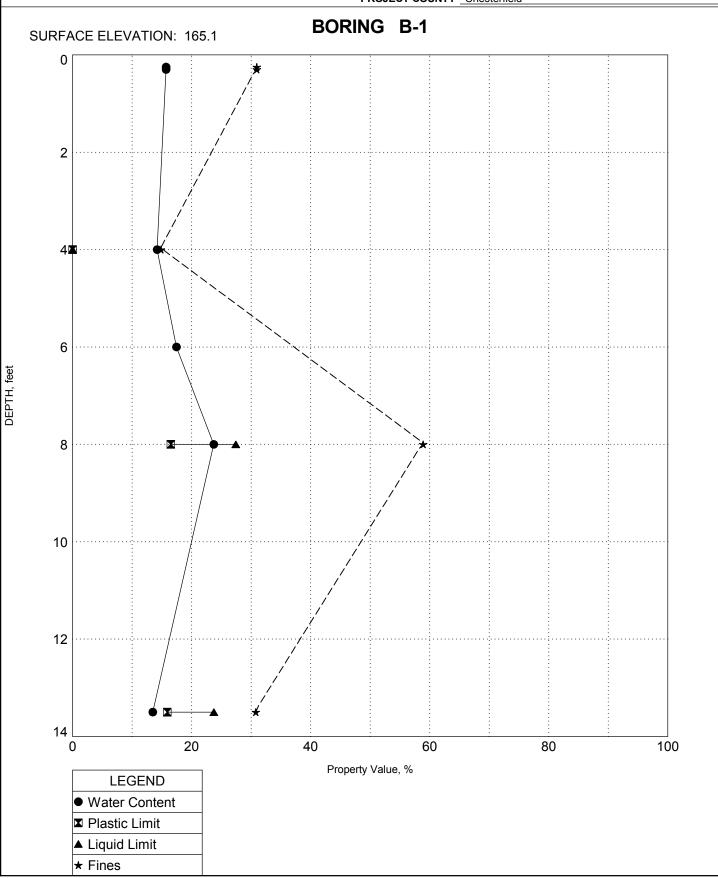

- Materials Finer Than 75-μm (No. 200) Sieve
- Liquid Limit, Plastic Limit and Plasticity Index of Soils
- Determination of Moisture Content of Soils
- Compressive Strength of Rock Cores

AASHTO T11/(ASTM D1140) AASHTO T89/90/(ASTM D4318) AASHTO T265/(ASTM D2216) AASHTO T226/(ASTM D7012)

Summary of Laboratory Results

			mary of Labo	<u> </u>		Sheet 1 of 1
BORING ID	Depth (Ft.)	Liquid Limit	Plastic Limit	Plasticity Index	% Fines	Water Content (%)
B-1	0.25 - 2				30.9	16
B-1	4 - 6	NP	NP	NP	14.8	14
B-1	6 - 8					17
B-1	8 - 10	27	17	10	58.9	24
B-1	13.5 - 15	24	16	8	30.8	13
B-2	0.2 - 2				19.1	8
B-2	2 - 4	35	22	13	43.2	20
B-2	4 - 6				21.1	10
B-2	6 - 8	23	16	7	35.8	15
B-2 B-2						
SITE: Cheste	RBO over	nan Bridge Road)	llerra	con	PROJECT NUMBER: 7 CLIENT: SCDOT	
			521 Clemson Columbia, S	Rd	CLIENT: Columbia, SC EXHIBIT: B-2	,

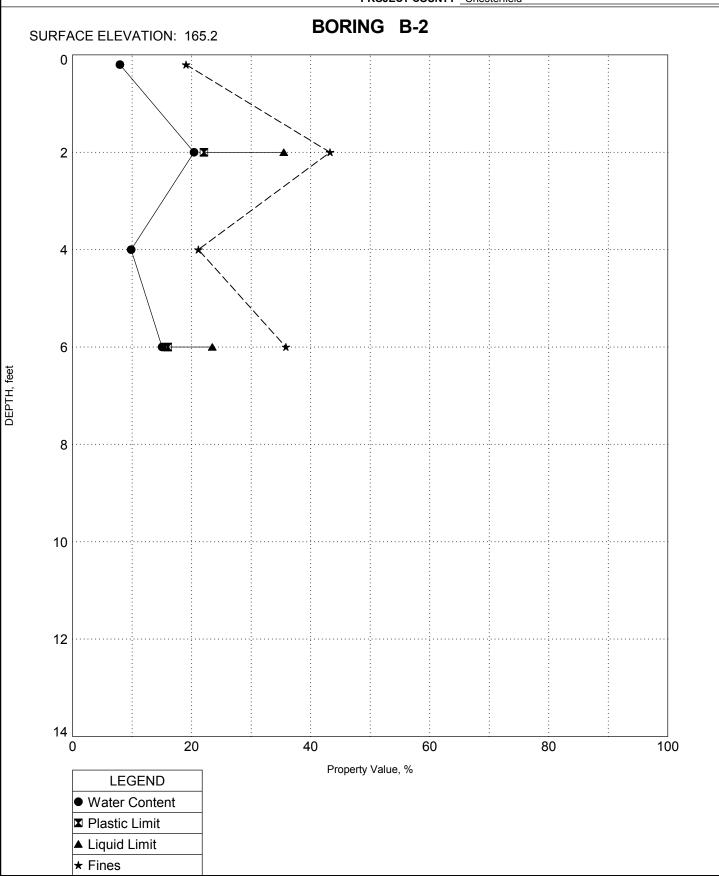
ATTERBERG LIMITS-AASHTO 7318P119E S-13-243 LAB DATA GPJ TERRACON DATATEMPLATE.GDT 1/16/19 -ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.


INDEX PROPERTIES VERSUS DEPTH

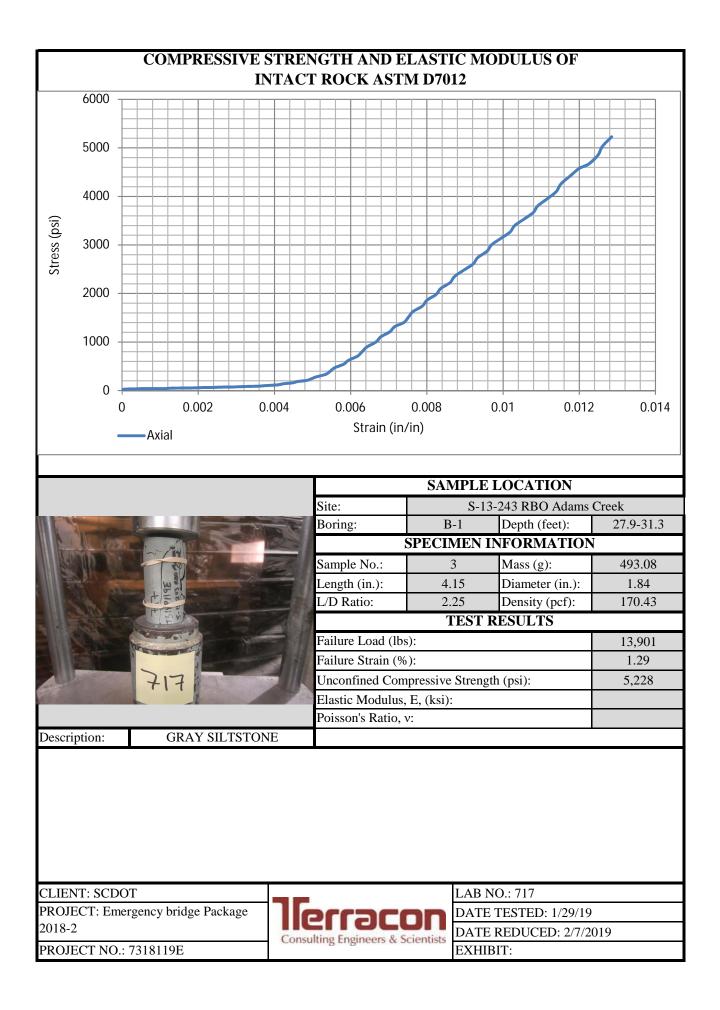
PROJECT ID P038245

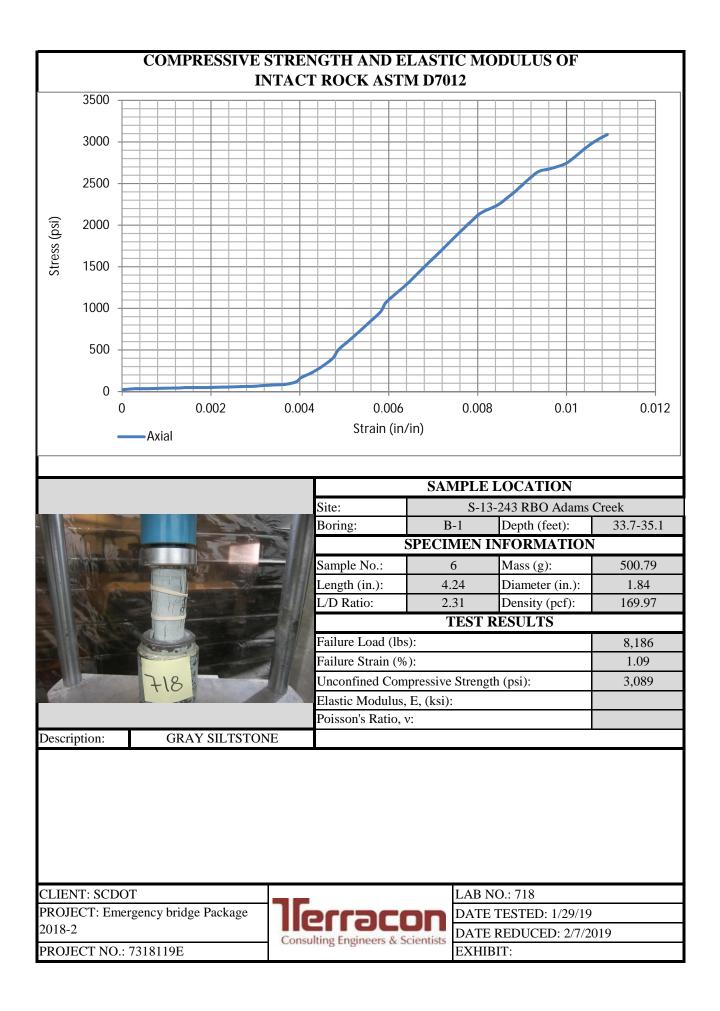
 PROJECT NAME
 S-13-243 (Buchanan Bridge Road) RBO Adams Creek

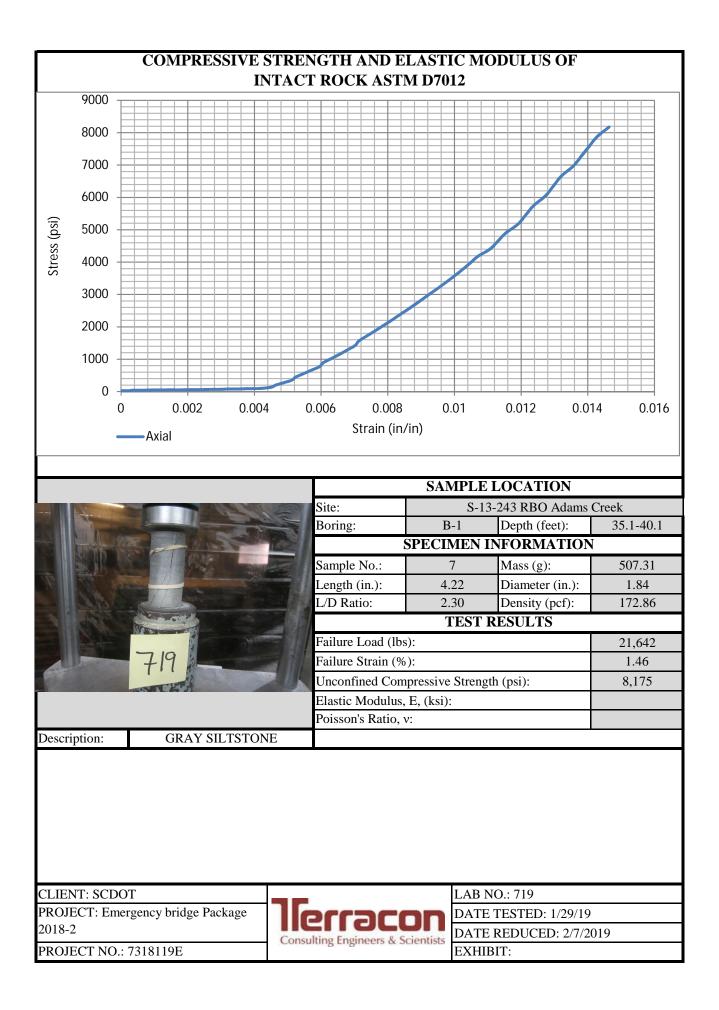
 PROJECT COUNTY
 Chesterfield


NDEX PROPS 7318P119E S-13-243 SCDOT.GPJ SCDOT DATA TEMPLATE_01_30_2015.GDT 2/5/19

INDEX PROPERTIES VERSUS DEPTH




PROJECT ID P038245


PROJECT NAME S-13-243 (Buchanan Bridge Road) RBO Adams Creek
PROJECT COUNTY Chesterfield

INDEX PROPS 7318P119E \$-13-243 SCDOT.GPJ SCDOT DATA TEMPLATE_01_30_2015.GDT 2/5/19

APPENDIX C SUPPORTING DOCUMENTS

Exhibit C-1 – Rig Calibration Documentation

DRILL RIG SPT HAMMER ENERGY **CALIBRATION REPORT**

Drill Rig Model CME-55 SN 359485

Terracon Drill Rig # 727 September 18, 2018

> Prepared for: Terracon Consultants, Inc. Columbia, SC

Prepared by: Terracon Consultants, Inc. North Charleston, South Carolina September 18, 2018

Terracon Consultants, Inc. 521 Clemson Rd. Columbia, SC 29229

Attn: Mr. Phillip Morrison, P.E. P: 803-212-0062 E: pamorrison@terracon.com

SPT Hammer Energy Calibration Report Re: Terracon Rig # 727, CME-55, SN:359485

Dear Mr. Morrison:

This report provides the Energy Transfer Ration (ETR) for the SPT hammer found on drill rig model CME-55, Drill Rig # 727 (Serial Number 359485).

If you have any questions concerning this report, or if we may be of further service, please contact us.

Sucheel

Senior Engineer

Susheel R. Kolwalkar, Ph.D., P.E

Sincerely

Terracon Consultants, Inc.

Ryalsaker Ryan Wakeford

Staff Engineer

Field Engineer

Attachments

Exhibit A-1: Representative Blow Exhibit A-1: PDA Equipment Calibrations Exhibit A-3: SPT Calibration Data Plots and Tables Exhibit A-4: Field Log

TERRACON CONSULTANT. INC. No. 2220 OFAUT

CARO

lerracon

HCA OFESSION

LAB:33184

9 18/18

Terracon Consultants, Inc. 1450 Fifth Street West North Charleston, South Carolina 29405 P [843] 884 1234 F [843] 884 9234 terracon.com

Geotechnical Environmental 🗖 Construction Materials Facilities

Drill Rig SPT Hammer Energy Calibration Report CME-55, SN: 359485, DR # 727 Columbia, SC September 18, 2018

lerracon

PROJECT INFORMATION 1.0

ITEM	DESCRIPTION
Drill Rig Identification	CME-55, SN 359485, DR # 727 (see photograph on cover page)
Drill Rig Owner	Terracon
Drill Rig Operator	Will B.
Testing Date	September 17, 2018
Testing Location	Terracon Parking Lot, Columbia, SC
Boring Identification	SB-1
Energy Measurement Depths	28.5 ft.; 33.5 ft.; 38.5 ft.; 43.5 ft.; 48.5 ft.
Hammer Type	Automatic
Boring Method	Hollow Stem Auger
Drill Rods	nAWJ n1%"outside diameter n3/16" wall thickness
SPT Calibration Testing Equipment	n2 foot AWJ rod instrumented w/2 strain gauges and 2 accelerometers nModel PAX Pile Driving Analyzer™ (PDA)
ASTM Methods Used	ASTM D1586-11 – Standard Test Method for Standard Penetration Test and Split Barrel Sampling of Solis ASTM D463-16 – Standard Methods for Energy Measurement for Dynamic Penetrometers
SPT Calibration Personnel	R. Wakeford & Z. McIntosh

TEST RESULTS 2.0

Table 1: SPT Hammer Energy Calibration Testing Summary asured Blow Counts Start Depth¹ (ft) Rod Rod SPT Soil Sections (blows/6 inches) Boring L. Type⁴ (ft) 2 ft 5 ft 10 ft 1st Inc. 4th Inc. (bpf) 2nd Inc. 3rd Inc. 28.5 30.0 0 6 0 11 18 SC 6 33.5 35.0 0 7 0 6 10 16 SC SB-1 38.5 40.0 SC 0 8 0 3 5 6 11 43.5 45.0 0 9 0 5 6 10 16 SC 48.5 50.0 0 10 0 2 6 5 11 SC 1. Depth from existing ground surface to start of SPT Total rod length from instrumentation to bottom of sampler
 Two foot section is instrumented and is located at top of drill rods

4. Soil type provided by Terracon personnel

Drill Rig SPT Hammer Energy Calibration Report CME-55, SN: 359485, DR # 727 Columbia, SC September 18, 2018

Table 2: Energy Measurement and Analysis Summary Start SPT No. of EMX³ (kip-ft) ETR3 (%) Boring Depth Max Min (ft) Blows² Ave Ave (bpf) Dev. Dev 28.5 18 18 0.34 0.32 0.32 0.005 92.6 1.434 33.5 16 16 0.33 0.32 0.32 0.004 92.1 1 281 SB-1 38.5 11 11 0.34 0.33 0.34 0.006 95.7 1.644 43.5 16 0.34 0.31 0.32 2.577 16 0.009 92.2 48.5 11 2.262 11 0.34 0.31 0.33 0.008 93.2

0.31 Average: 0.34 0.33 0.006 93.2 1.840 1. Boring ID and depth from existing ground surface to start of SPT Number of blows used in energy calibration analysis; limited to measurements recorded during the second and third 6-inch sampling intervals at each depth or during the first increment if refusal were encountered

3. EMX = Maximum Transferred Energy, ETR = Energy Transfer Ratio.

Table 3: Hammer Blow Rate Summary	1
-----------------------------------	---

	Start	SPT	No.		BP	M ³	
Boring	Depth ¹ (ft)	N _{meas} (bpf)	of - Blows ²	Max.	Min.	Ave.	Std. Dev
	28.5	18	18	54.3	52.8	53.6	0.381
	33.5	16	16	54.8	54.0	54.4	0.236
SB-1	38.5	11	11	55.5	53.9	54.5	0.520
	43.5	16	16	55.6	53.4	54.2	0.517
	48.5	11	11	55.2	53.8	54.4	0.469
		Average:		55.1	53.6	54.2	0.425

 Boring ID and depth from existing ground surface to start of SPT.
 Number of blows used in energy calibration analysis. Limited to me surements recorded during the second

and third 6-inch sampling intervals at each depth or during the 1st increment if refusal conditions were 3. BPM = Blows per minute

3.0 CONCLUSIONS

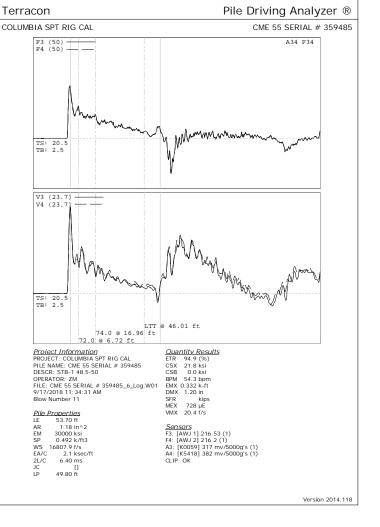
Energy Transfer Ratio (ETR) and Hammer Efficiency Correction (CE) 3.1

Based on our testing and subsequent analysis, drill rig CME-55 (No. 727) has an ETR of 93.2% ± 1.84%. Based on this ETR, the hammer efficiency correction (C_E) is 1.55.

llerracon

Drill Rig SPT Hammer Energy Calibration Report CME-55, SN: 359485, DR # 727
Columbia, SC September 18, 2018

Terracon

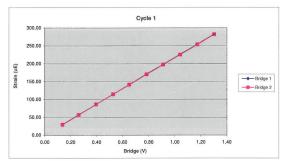


Responsive Resourceful Reliable

Drill Rig SPT Hammer Energy Calibration Report CME-55, SN: 359485, DR # 727 Columbia, SC September 18, 2018 **Terracon**

Exhibit A-2 PDA Equipment Calibrations

267AWJ	C	/cle 1		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V
1	0.00	0.00	0.00	0.00
2	1034.65	29.80	0.14	0.14
3	1995.74	57.07	0.26	0.26
4	3021.54	86.56	0.40	0.40
5	4013.51	114.64	0.53	0.53
6	4945.09	141.59	0.65	0.65
7	5967.55	170.38	0.78	0.78
8	6935.72	197.78	0.91	0.91
9	7944.21	225.43	1.04	1.04
10	8935.59	253.69	1.17	1.17
11	9924.61	282.06	1.30	1.30


Force Calibration (lb/V)	7636.82	Force Calibration (lb/V)	7622.38
Offset	-7.82	Offset	-11.05
Correlation	0.999996	Correlation	0.999997
Strain Calibration (µE/V)	216.43	Strain Calibration (µE/V)	216.02
Offset	0.60	Offset	0.51
Correlation	0.999996	Correlation	0.999993

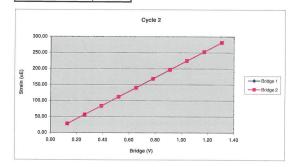
 Force Strain Calibration

 EA (Kips)
 35284.30

 Offset
 -29.01

 Correlation
 0.999989

267AWJ		Cycle 2		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	979.97	28.37	0.13	0.13
3	2002.82	57.00	0.26	0.26
4	2963.52	84.19	0.39	0.39
5	3965.12	112.62	0.52	0.52
6	4973.02	141.14	0.65	0.65
7	5964.01	169.18	0.78	0.78
8	6938.87	197.15	0.91	0.91
9	7932.41	224.93	1.04	1.04
10	8939.72	253.23	1.17	1.17
11	9962.18	281.86	1.30	1.31
Bridge 1		Bridge 2		
Fores Calibration (Ib/0/)	7004.05	Farras Oalibustian (Ib 0.0	7000 40	


Force Calibration (Ib/V)	7634.65	Force Calibration (lb/V)	7626.42
Offset	-9.30	Offset	-6.45
Correlation	0.999997	Correlation	0.999997
Strain Calibration (µE/V)	215.81	Strain Calibration (µE/V)	215.58
Offset	0.30	Offset	0.38
Correlation	0.999997	Correlation	0.999996

 Force Strain Calibration

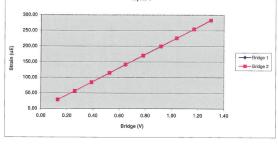
 EA (Kips)
 35375.85

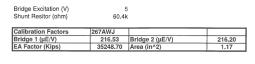
 Offset
 -19.88

 Correlation
 0.999997

267AWJ		Cycle 3		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	982.53	28.74	0.13	0.13
3	1993.97	56.89	0.26	0.26
4	2965.68	84.76	0.39	0.39
5	4014.49	114.61	0.53	0.53
6	4944.11	141.53	0.65	0.65
7	5962.04	170.43	0.78	0.78
8	6994.93	199.62	0.92	0.92
9	7922.38	225.92	1.04	1.04
10	8918.48	254.51	1.17	1.17
11	9909.26	283.02	1.30	1.30

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7625.63	Force Calibration (Ib/V)	7613.58
Offset	-4.78	Offset	-1.05
Correlation	0.999999	Correlation	0.999998
Strain Calibration (µE/V)	217.34	Strain Calibration (µE/V)	217.00
Offset	0.23	Offset	0.33
Correlation	0.999995	Correlation	0.999998

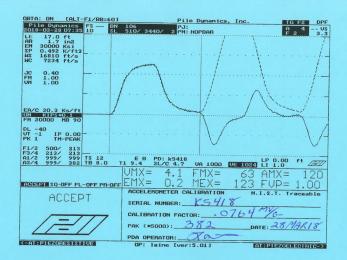

 Force Strain Calibration


 EA (Kips)
 35085.96

 Offset
 -12.70

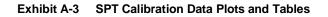
 Correlation
 0.999996

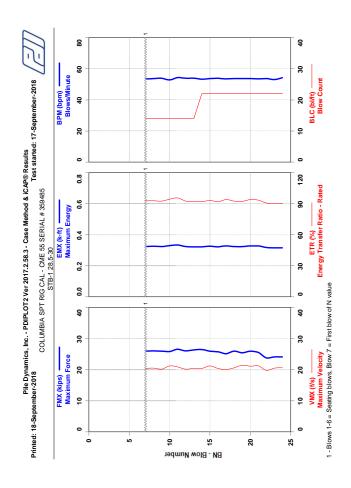
Cycle 3



Calibrated by: Navid Brad

Pile Dynamics Inc 30725 Aurora Rd Solon, OH 44139 Traceable to N.I.S.T.


Smart Sensor


Smart Chip Programmed By Z.W. on 28 MAR 18 CRC Value A750

Smart Sensor

Smart Chip Programmed By A.W. on 23 MAR18 CRC Value 63 A C

Drill Rig SPT Hammer Energy Calibration Report CME-55, SN: 359485, DR # 727 Columbia, SC September 18, 2018 **Terracon**

Pile Dynamics, Inc. Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-September-2018

	/BIA SPT RI	G CAL - CM	ME 55 SERI	AL # 3594	85				28.5-30
OP: ZM							Date: 1	7-Septemb	
AR:	1.18 in ²								492 k/ft ³
LE:	33.70 ft							EM: 30,	
	,807.9 f/s								0.00
	/laximum Fo						Blows/Minut		
	/laximum Ve							isplacemer	
	/laximum En					CSX: 0	Compressio	on Stress Ma	aximum
	Energy Trans								
BL#	Depth	BLC	FMX	VMX	EMX	ETR	BPM	DMX	CSX
	ft	bl/ft	kips	f/s	k-ft	(%)	bpm	in	ksi
7	29.07	14	26	20.4	0.325	92.7	53.5	0.86	22.0
8	29.14	14	26	20.5	0.325	92.8	53.6	0.86	22.1
9	29.21	14	26	20.2	0.324	92.5	53.9	0.86	22.0
10	29.29	14	26	21.2	0.330	94.4	52.8	0.86	21.9
11	29.36	14	27	20.9	0.335	95.7	54.3	0.87	22.5
12	29.43	14	26	20.2	0.324	92.5	53.8	0.86	22.1
13	29.50	14	26	20.4	0.322	91.9	54.0	0.87	22.4
14	29.55	22	26	20.4	0.322	92.1	53.3	0.67	22.5
15	29.59	22	26	21.2	0.326	93.1	53.6	0.69	22.0
16	29.64	22	26	20.4	0.322	92.1	53.8	0.67	21.8
17	29.68	22	25	20.0	0.329	94.0	53.5	0.69	21.3
18	29.73	22	26	20.6	0.324	92.5	53.7	0.62	22.0
19	29.77	22	25	21.4	0.323	92.4	53.6	0.65	21.6
20	29.82	22	26	21.2	0.329	94.0	53.7	0.65	22.0
21	29.86	22	26	21.2	0.327	93.4	53.4	0.64	21.6
22	29.91	22	24	19.8	0.317	90.7	53.7	0.62	20.2
23	29.95	22	24	20.5	0.315	89.9	53.0	0.59	20.5
24	30.00	22	24	20.6	0.316	90.4	54.3	0.59	20.4
		Average	26	20.6	0.324	92.6	53.6	0.73	21.7
		td. Dev.	1	0.5	0.005	1.4	0.4	0.11	0.7
		aximum	27	21.4	0.335	95.7	54.3	0.87	22.5
	N	1inimum	24	19.8	0.315	89.9	52.8	0.59	20.2
			Total n	umber of b	olows analyz	ed: 18			

BL# Sensors

7-24 F3; [AWJ 1] 216.5 (1.00); F4: [AWJ 2] 216.2 (1.00); A3: [K0059] 317.0 (1.00); A4: [K5418] 382.0 (1.00)

BL# Comments

7 Blows 1-6 = Seating blows, Blow 7 = First blow of N value

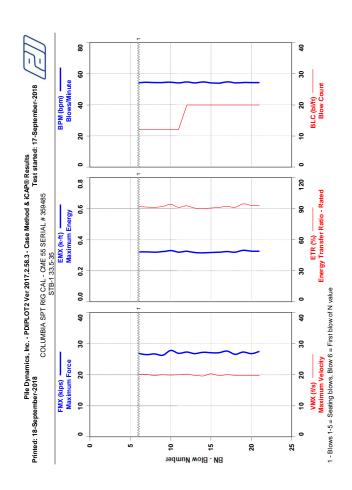
Time Summary

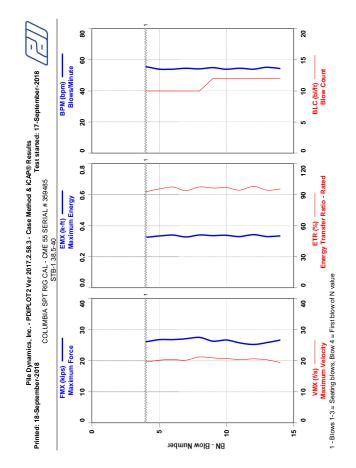
Drive 25 seconds 10:58 AM - 10:58 AM BN 1 - 24

	namics, Inc. /lethod & iCA	.P® Results	5	I	PDIPLOT2 2	2017.2.58.3	- Printed 18	B-Septembe	Page 1 er-2018
COLUN	MBIA SPT RI	G CAL - CM	ME 55 SERI	AL # 3594	85		Date: 1	STB-1 7-Septemb	33.5-35 er-2018
AR:	1.18 in ²							SP: 0.	
LE:	38.70 ft							EM: 30,	
WS: 16	6,807.9 f/s							JC: 0	0.00
FMX: N	Maximum Fo	rce				BPM: E	Blows/Minut	te	
VMX: N	Maximum Ve	locity				DMX: N	/laximum D	isplacemer	ıt
	Maximum En					CSX: 0	Compressio	on Stress Ma	aximum
	Energy Trans								
BL#	Depth	BLC	FMX	VMX	EMX	ETR	BPM	DMX	CSX
	ft	bl/ft	kips	f/s	k-ft	(%)	bpm	in	ksi
6	34.08	12	27	20.1	0.322	92.0	54.2	1.14	22.8
7	34.17	12	26	20.1	0.321	91.7	54.6	1.09	22.4
8	34.25	12	27	19.8	0.320	91.4	54.3	1.05	22.6
9	34.33	12	26	20.0	0.323	92.2	54.4	1.01	22.2
10	34.42	12	28	19.9	0.330	94.3	54.6	1.14	23.6
11	34.50	12	27	20.0	0.320	91.5	54.1	1.00	22.8
12	34.55	20	27	20.2	0.325	92.8	54.7	0.89	23.2
13	34.60	20	27	19.8	0.317	90.7	54.2	0.85	22.7
14	34.65	20	27	19.6	0.315	90.0	54.7	0.81	23.0
15	34.70	20	27	20.3	0.318	90.8	54.2	0.75	22.9
16	34.75	20	27	19.7	0.320	91.3	54.0	0.81	22.9
17	34.80	20	28	20.0	0.323	92.3	54.8	0.77	23.4
18	34.85	20	27	19.8	0.320	91.4	54.2	0.77	22.5
19	34.90	20	27	19.8	0.331	94.7	54.4	0.81	23.1
20	34.95	20	27	19.7	0.327	93.3	54.4	0.74	22.7
21	35.00	20	28	19.7	0.326	93.2	54.4	0.71	23.3
		Average	27	19.9	0.322	92.1	54.4	0.89	22.9
		td. Dev.	0	0.2	0.004	1.2	0.2	0.15	0.4
		aximum	28	20.3	0.331	94.7	54.8	1.14	23.6
	N	linimum	26	19.6	0.315	90.0	54.0	0.71	22.2

26 19.6 0.315 90.0 Total number of blows analyzed: 16

BL# Sensors


6-21 F3; [AWJ 1] 216.5 (1.00); F4: [AWJ 2] 216.2 (1.00); A3: [K0059] 317.0 (1.00); A4: [K5418] 382.0 (1.00)


BL# Comments

6 Blows 1-5 = Seating blows, Blow 6 = First blow of N value

Time Summary

Drive 22 seconds 11:05 AM - 11:05 AM BN 1 - 21

Pile Dynamics, Inc.	Page 1
Case Method & iCAP® Results	PDIPLOT2 2017.2.58.3 - Printed 18-September-2018

	MBIA SPT RI	G CAL - CM	ME 55 SERI	AL # 3594	85				38.5-40
OP: ZN							Date: 1	7-Septemb	
AR:	1.18 in ²							SP: 0	
LE:	43.70 ft							EM: 30,	
	5,807.9 f/s								.00
	Maximum Fo						Blows/Minut		
	Maximum Ve							isplacemer	
	Maximum En					CSX: 0	Compressio	on Stress Ma	aximum
	Energy Trans	sfer Ratio -	Rated						
BL#	Depth	BLC	FMX	VMX	EMX	ETR	BPM	DMX	CSX
	ft	bl/ft	kips	f/s	k-ft	(%)	bpm	in	ksi
4	39.10	10	26	19.5	0.325	92.9	55.5	1.42	22.0
5	39.20	10	27	20.2	0.334	95.6	54.0	1.30	22.7
6	39.30	10	27	20.4	0.341	97.4	54.0	1.26	22.7
7	39.40	10	27	20.1	0.329	93.9	54.5	1.20	22.9
8	39.50	10	27	21.2	0.341	97.6	54.2	1.20	23.3
9	39.58	12	26	20.9	0.338	96.4	54.9	1.04	22.3
10	39.67	12	27	20.7	0.339	96.9	53.9	1.11	22.6
11	39.75	12	26	20.3	0.331	94.5	54.5	1.11	21.8
12	39.83	12	25	20.6	0.343	98.0	54.0	1.17	21.4
13	39.92	12	26	20.2	0.331	94.5	55.1	1.10	21.9
14	40.00	12	27	19.4	0.334	95.5	54.4	1.12	22.6
		Average	26	20.3	0.335	95.8	54.5	1.18	22.4
	S	td. Dev.	1	0.5	0.006	1.6	0.5	0.10	0.5
	M	aximum	27	21.2	0.343	98.0	55.5	1.42	23.3
	N	linimum	25	19.4	0.325	92.9	53.9	1.04	21.4
			Total n	umber of b	lows analyz	ed: 11			

BL# Sensors

4-14 F3: [AWJ 1] 216.5 (1.00); F4: [AWJ 2] 216.2 (1.00); A3: [K0059] 317.0 (1.00); A4: [K5418] 382.0 (1.00)

BL# Comments

4 Blows 1-3 = Seating blows, Blow 4 = First blow of N value

Time Summary

Pile Dynamics, Inc.

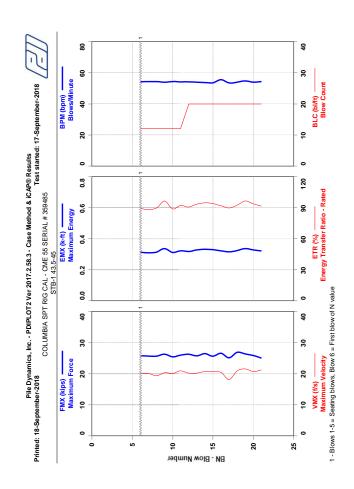
Drive 14 seconds 11:14 AM - 11:14 AM BN 1 - 14

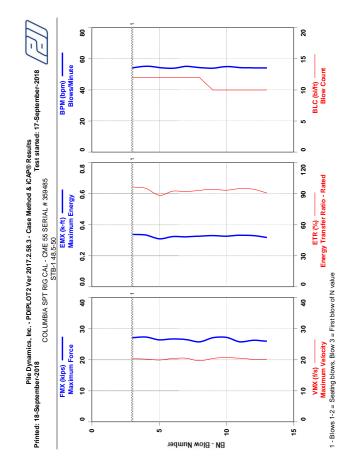
	lethod & iCA	P® Results	6	I	PDIPLOT2 2	2017.2.58.3	- Printed 1	B-Septembe	er-2018
COLUN	MBIA SPT RI	G CAL - CI	ME 55 SERI	AL # 3594	85			STB-1	43.5-45
OP: ZN	1						Date: 1	7-Septemb	er-2018
AR:	1.18 in ²							SP: 0.4	
LE:	48.70 ft							EM: 30,0	000 ksi
WS: 16	6,807.9 f/s							JC: C	0.00
FMX: N	Maximum Fo	rce				BPM: B	Blows/Minut	te	
VMX: N	Maximum Ve	locity				DMX: I	Maximum D	isplacemen	ıt
EMX: N	Maximum En	ergy				CSX: 0	Compressio	on Stress Ma	aximum
ETR: E	Energy Trans	sfer Ratio -	Rated						
BL#	Depth	BLC	FMX	VMX	EMX	ETR	BPM	DMX	CSX
	. ft	bl/ft	kips	f/s	k-ft	(%)	bpm	in	ksi
6	44.08	12	26	20.2	0.313	89.4	54.2	1.01	21.9
7	44.17	12	26	20.1	0.309	88.2	54.3	1.00	21.8
8	44.25	12	26	19.3	0.314	89.8	54.3	1.00	21.7
9	44.33	12	26	20.3	0.338	96.4	53.9	1.20	22.3
10	44.42	12	25	20.1	0.311	88.8	54.4	1.00	21.5
11	44.50	12	26	20.9	0.323	92.2	54.1	1.00	22.0
12	44.55	20	26	20.2	0.318	90.7	54.2	0.79	22.2
13	44.60	20	26	20.2	0.327	93.5	54.0	0.93	21.8
14	44.65	20	26	20.7	0.332	94.8	53.7	0.77	22.4
15	44.70	20	26	20.7	0.329	94.0	53.5	0.78	21.7
16	44.75	20	27	20.4	0.322	92.0	55.6	0.72	22.5
17	44.80	20	25	18.1	0.315	89.9	53.4	0.69	21.3
18	44.85	20	27	20.9	0.323	92.4	54.0	0.62	22.8
19	44.90	20	26	21.6	0.338	96.6	54.8	0.75	22.3
20	44.95	20	26	20.7	0.328	93.7	54.0	0.70	21.9
21	45.00	20	25	21.3	0.321	91.6	54.4	0.65	21.2
		Average	26	20.4	0.322	92.1	54.2	0.85	22.0
		td. Dev.	1	8.0	0.009	2.5	0.5	0.16	0.4
		aximum	27	21.6	0.338	96.6	55.6	1.20	22.8
	N	linimum	25	18.1	0.309	88.2	53.4	0.62	21.2

Page 1

25 18.1 0.309 88.2 Total number of blows analyzed: 16

BL# Sensors


6-21 F3; [AWJ 1] 216.5 (1.00); F4: [AWJ 2] 216.2 (1.00); A3: [K0059] 317.0 (1.00); A4: [K5418] 382.0 (1.00)


BL# Comments

6 Blows 1-5 = Seating blows, Blow 6 = First blow of N value

Time Summary

Drive 22 seconds 11:25 AM - 11:26 AM BN 1 - 21

Pile Dynamics, Inc. Page 1 Case Method & iCAP® Results PDIPLOT2 2017.2.58.3 - Printed 18-September-2018

	MBIA SPT RI	G CAL - CM	/IE 55 SERI	AL # 3594	85				48.5-50
OP: ZN							Date: 1	7-Septemb	
AR: LE:	1.18 in ² 53.70 ft							SP: 0.4	
								EM: 30,0 JC: 0	
	5.807.9 f/s					DDM	Blows/Minut		.00
	Maximum Fo Maximum Ve							isplacemen	
	Maximum En Energy Trans		Potod			CSX: I	Compressio	on Stress Ma	aximum
BL#		BLC	FMX	VMX	EMX	ETR	BPM	DMX	CSX
BL#	Depth ft	bl/ft		f/s	k-ft		bpm	in	ksi
3	49.08	12	kips 27	20.3	0.338	(%) 96.5	54.1	1.27	22.9
4	49.08	12	27	20.3	0.338	95.3	55.2	1.03	22.9
5	49.17	12	26	20.2	0.333	95.5 88.4	54.4	1.03	23.1
6	49.23	12	20	20.4	0.324	92.5	53.8	1.00	22.4
7	49.33	12	27	20.4	0.324	92.5 92.1	53.8 55.1	1.00	22.6
		12		20.5		92.1	54.3	1.00	22.4
8 9	49.50 49.60	12	26 27	20.4	0.326 0.331	93.3 94.5	54.3 54.0	1.03	21.8
10	49.60	10	27	20.4	0.331	94.5 93.4	54.0 55.0	1.20	22.9
11	49.70	10	26	20.7	0.327	93.4 94.9	54.3	1.20	23.0
12	49.80	10	26	20.4	0.332	94.9 94.3	54.3 54.2	1.20	21.8
13	49.90 50.00	10	26	20.1	0.330	94.3 90.6	54.2	1.20	22.2
13			20	20.1	0.317	93.2	54.4	1.12	22.5
		Average td. Dev.	27	20.2	0.326	93.2	54.4 0.4	0.10	22.5
		aximum	27	20.7	0.008	2.2	55.2	1.27	23.1
		linimum	26	20.7	0.338	96.5 88.4	53.8	1.00	23.1
	IV	mmumum					53.8	1.00	21.8
			i otali n	uniper of c	lows analyz	eu. 11			

BL# Sensors

3-13 F3: [AWJ 1] 216.5 (1.00); F4: [AWJ 2] 216.2 (1.00); A3: [K0059] 317.0 (1.00); A4: [K5418] 382.0 (1.00)

BL# Comments

3 Blows 1-2 = Seating blows, Blow 3 = First blow of N value

Time Summary

Drive 13 seconds 11:34 AM - 11:34 AM BN 1 - 13

Exhibit A-4 Field Log

Responsive Resourceful Reliable

	2			C					EPART TIM		Hoe	r5	_
									TOTAL TIM	E: 7	Hours		
	SP	T HAM				ION			CLIENT RE	P:	V/A		_
		FIELD) WC	RKS	HEET				MILEAG	E: 18	8		
PRO.		: Col.	pide	51.				DATE	. 4.	17-18	0		
PR	OJECT NO		1/A	~		-	TERRA	CON REP		-			
E	ORING NO			0.000		-		ODEL/SN	Ceren		56		-
	CLIENT		ala	~		-	TERRACON F					5.2	
	DI		DATA			-		SPT H			Δ		
Ту	pe/Transpor							Туре		Aute			
Ν	Manufacture					-	Ma	nufacturer		TE			
	Model No					-	Lifting M	echanism	: 01	anin	_		_
	Serial No	: 3594	185	8		-		Model No.	: -			100	
	Year Buil	t: 20	08			_		Serial No	-	-			_
	Addifications		XA			_		er Weight					
Mai	nt. Schedule	As no	oded	1	S.,	_	Hammer O	perator(s)	- W:	11年1	raso	2	
					PDA	INPUT	DATA						
	Operato	C OP	ZM				Elastic Mod	lulus (ksi):	EM	3000			
Project I	No./Location	: PJ	Colom	bin.Sc		-	Specific Weigh	t (kips/ft ³):	SP	0.492			-
Rig	Model & SN	: PN		·.55		-	Wave Spee			16808			
Hammer Typ	e, LM, Rods	E PD	Aute.	Chain .	AWT		Increment L	ength (ft):	ш	0.5			
Drill Re	od Area (in ²)	: AR		1.18			Sampling Fi	eq. (kHz):	FR	50			
	TRANS	DUCER I	NFOR	MATIC	N	NOTES:	Instrumentation	to Botto	m of Roc	Length	-		
Gage		SN			ibration	10	.2"	Inches			8.75	<i>;</i> '	Fe
F1/F3:	AWT. I			816,	53	<u> </u>						-	-
F2/F4:	AWI.8			215.	20	SPLIT SP	POON SAMPLE	R LENGT	н	1	0. 8.	3'	-
A1/A3:	KOOS	9		317		Guage to	Bottom of Cal.	Rod leng	gth	371	+ R	od	
A2/A4:	K-541	8		380		¹ LE is N	leasured from t	he Cente	r of the S	train Gu	ages to	the bot	tom
				CD.	TTEET		on Sampler						
		Stick Up	Den	th (ft)	TIEST	NG INF	ORMATIO		Blows	-	EDT	Blows	-
Start Time	Soil	Length (ft)	Start	End	¹ LE (ft)	Rods	& Lengths	Start	End	1st 6"	2nd 6"	_	
	<u> </u>	1				2ft	5ft 10ft	oun	Lind	1010	2110 0	010 0	1 ch
1255	50	59.5	23.5	25	28.7	2ft	5ft 10ft	١	39	8	12	18	3
11:00	50	57	28.5	30	33.7	2ft	Sft 26 10ft		25	6	7	11	1
	3C	53.75	53.5	35	38.7	2ft	(5# x7 10ft	,	-	5	6	10	16
	3C	56	38.5	40	437	2ft	5ft x 8 10ft	1	32	3	5	6	1
11:07	50	28	135	45	48.7	2ft	5ft 2 9 10ft	4	25	5	2	10	14
11/16		UQ S	485	50	53.7	2ft	Str AC 10ft	2	15	2	6	5	+
11116			10 2	a	23.7	2π 2ft	5ft 10ft	æ	10		0	>	11
11/16	3C	sec. 2			1	∠n					1		+-
11116		40.0				26			1	1	1	L	1
11116 11:28 11:36	3c		time ch	all he ur-		2ft	5ft 10ft				i		
IIII 16 N.28 III36	3C	signals versus				good qual	ity data.						_
IIII 16 N.28 III36	3C	signals versus				good qual		ened for g	iood quali	ty data			_
III 16 II 28 III 36 Individual pair If you see For	3C rs of F or V s ce goes neg	signals versus gative before 2 I D INFO: Tak	2L/C afte	r impact, of Each	drill rod join Rigs, Borir	good qua ts should	ity data.	ened for g	lood quali	ty data			-
III 16 1128 1136 Individual pain If you see For PICTURE NU	3C rs of F or V s ce goes neg	signals versus gative before 2 I D INFO: Tak	2L/C afte	r impact, of Each	drill rod join Rigs, Borir	good qua ts should	ity data. be carefully tight	ened for g	lood quali	ty data			-
III 16 1128 1136 Individual pain If you see For PICTURE NU	5C rs of F or V s ce goes neg MBERS AN od: (ie. Holl	signals versus gative before : ID INFO: Tak ow Stem Aug	2L/C afte	r impact, of Each	drill rod join Rigs, Borir	good qua ts should	ity data. be carefully tight ons at the Site	ened for g		ty data	5	1	